Cruelest Month, COVID-19, and Fiat Lux

Around the UC Berkeley campus, there has been a plethora of COVID-19 responses that will help developing and developed countries alike.

Cruelest Month, COVID-19, and Fiat Lux

April is the cruellest month, breeding
Lilacs out of the dead land, mixing
Memory and desire, stirring
Dull roots with spring rain.

So began T. S. Eliot’s 1922 poem The Waste Land about madness and death, trauma and hope, and the confusing world of the early 20th century. A century later, we find ourselves in another cruel April, one witnessed and suffered by the whole world due to the coronavirus disease pandemic: COVID-19.

At the Blum Center, we like all centers and departments and schools have been shifting to online teaching, advising, and working—as well as closely following the spread of the disease to low-income countries and regions. As you know, the news is bad. The COVID-19 crisis threatens to disproportionately affect developing countries, not only as a health crisis but as a devastating social and economic crisis. 

For poor countries, the socioeconomic fallout from COVID-19 could take years to recover from, according to a United Nations Development Programme (UNDP) report released on March 30. The report warns that income losses are expected to exceed $220 billion in developing countries, and nearly half of all jobs in Africa could be lost:

“With an estimated 55 per cent of the global population having no access to social protection, these losses will reverberate across societies, impacting education, human rights and, in the most severe cases, basic food security and nutrition. Under-resourced hospitals and fragile health systems are likely to be overwhelmed. This may be further exacerbated by a spike in cases, as up to 75 per cent of people in least developed countries lack access to soap and water.”

But there is room for hope and more for action. As Berkeley Economics Professor Edward Miguel points out in a recent Cal news article, Africa has certain strengths for combatting COVID-19. Unlike much of Europe, the median age of many African countries is young: 20 years old. That could mean the proportion of people who die could be much lower in African countries. That might also be true for India, where the median age is 26.8. Miguel, who is faculty director of the Center for Effective Global Action, also notes two other strengths: Even though Africa is rapidly urbanizing, a large share of the population still lives in rural areas, where social distancing is more possible.

He continues: “Another strength is the regional experience in sub-Saharan Africa dealing with Ebola in the last five or six years. There was infrastructure put in place to screen people, to contain an epidemic. I know Ebola and COVID-19 are quite different, but that capacity building may help now. And Africa has 30 years of dealing with the HIV/AIDS epidemic. Partially due to local initiatives, partially due to global aid initiatives, African health systems are much stronger than they were 20 years ago, or 15 years ago.”

Still, there is much to fear and prepare for. Multilateral agencies, international foundations, and all manner of aid organizations focused on poor countries are moving funds and resources toward saving lives. A UNDP-led COVID-19 Rapid Response Facility has been launched with an initial $20 million; however, UNDP anticipates a minimum $500 million need to support 100 countries. The International Monetary Fund and World Bank have urged debt relief to poorer countries hit by the coronavirus pandemic, with bilateral creditors playing a major role.

“Many countries will need debt relief. This is the only way they can concentrate any new resources on fighting the pandemic and its economic and social consequences,” said World Bank President David Malpass at a March 26 meeting. Malpass reported that the bank has emergency operations under way in 60 countries and its board is considering the first 25 projects valued at nearly $2 billion under a $14 billion fast-track facility to help fund immediate healthcare needs. Meanwhile, the State Department and the U.S. Agency for International Development have pledged $274 million in health and humanitarian assistance. And Bill Gates is spending billions to set up factories that will make the seven most promising coronavirus vaccines. 

Around the UC Berkeley campus, there has been a plethora of COVID-19 responses that will help developing and developed countries alike. The first target of a new AI research consortium, the C3.ai Digital Transformation Institute (of which I am co-director), is research that addresses the application of AI and machine learning to mitigate the spread of COVID-19. Bioengineering Professor and Blum Center Chief Technologist Dan Fletcher and his lab members have come up with a way to adapt the fluorescence microscopy function of their mobile phone microscope, the CellScope, to assist in rapid testing. Fletcher and his colleagues have been working with virology expert Melanie Ott of the Gladstone Institute and CRISPR pioneer Jennifer Doudna, among others, to provide the rapid remote detection portion of the team’s CRISPR-based COVID-19 RNA detection method. Dr. Bertram Lubin, the Blum Center’s and College of Engineering’s senior advisor in health, has been working with a coalition of UC Berkeley engineers led by Mechanical Engineering Professor Grace O’Connell, emergency room doctors, and critical care pulmonologists to turn sleep apnea machines into ventilators. And Development and Mechanical Engineering Student Paige Balcom is in Uganda (where there are 55 ICU beds with oxygen for a population of nearly 43 million people), using her social enterprise Takataka Plastics to manufacture face shields for doctors and staff in the town of Gulu.

In this issue of the Blum Center’s Innovation Chronicle, we salute these and others working stop the spread of COVID-19 and educating the next generation of Berkeley changemakers. Fiat Lux!

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and Siebel Professor of Electrical Engineering and Computer Sciences, Bio-engineering and Mechanical Engineering at UC Berkeley.

 

Global Gains in Reducing Extreme Poverty

Global Gains in Reducing Extreme Poverty

By Shankar Sastry

In a recent poll from Oxford University’s Our World in Data, a majority of Americans said that the share of the world population living in poverty is increasing—yet one of the trends of the last 50 years has been a huge reduction in global poverty. In fact, per World Bank data, the proportion of the Earth’s population subsisting on about $2 a day or less has dropped by more than 75 percent over the last four decades—from 42 percent in 1981 to 10 percent in 2015.

Just as remarkable, annual worldwide deaths of children under 5 have plummeted since 1990. Thanks to health interventions in respiratory infections, diarrhea, and preterm birth as well as massive success in vaccinations for measles, tuberculosis, and malaria—global child death rates have dropped by more than a half. We also are approaching 90 percent adult literacy and seeing large gains in girls’ education.

So why are so many Americans unaware of these tremendous global gains?

One reason is that whereas poverty, health, and educational outcomes are improving in developing nations, in the U.S. poverty shot up to 1960s levels in 2009 and the cost of health, housing, and higher education is thwarting socioeconomic mobility for too many Americans.  The regional, racial, and class details of this phenomenon are constantly in the news. In fact, in America— thanks to our always-on, click bait media—we are drowning ourselves in bad news.

Yet here on the UC Berkeley campus and at the Blum Center, we find students are not just well informed—many are brimming with hope and commitment to continue to fight extreme poverty in developing nations and to reduce inequality and work for social and economic justice in the United States. We also finding that in addition to students lending their energy and intelligence to established organizations, some are seeking to form news ones through startups and through incubators and accelerators like Big Ideas, CITRIS Foundry, and Skydeck.

There is also growing understanding among Blum Center faculty, staff, and students that higher education must adapt to the future of work. As my good friend Carnegie Mellon University President Farnam Jahanian pointed out in a recent World Economic Forum article, “There is an undeniable need to train the next generation in emerging digital competencies and to be fluent in designing, developing, or employing technology responsibly. At the same time, 21st-century students must learn how to approach problems from many perspectives, cultivate and exploit creativity, engage in complex communication, and leverage critical thinking.”

In this issue of the Blum Center’s Innovation Chronicle, we invite you to read about students combining these skills sets for a fairer planet. Please read about Kaloum Bankhi, a sustainable housing organization in Guinea led by Big Ideas winner and recent UC architecture graduate Aboubacar Komara. We also have an article about the forest economics research group led by Professor Matthew Potts, who is Vice Chair of the Graduate Group in Development Engineering. And we invite you to listen to our Global Poverty & Practice students about their poverty action fieldwork in the Philippines, San Francisco, India, and Colombia.

All their efforts, combined with the larger story of global poverty reduction, make me think that 2020 is a year for great hope and hard work for global progress. 

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley.

Why We Are Expanding the Field of Development Engineering

Why We Are Expanding the Field of Development Engineering

By Shankar Sastry

This winter, the Blum Center was among the many groups in academia and development to celebrate the recipients of the Nobel Prize in Economics. Professors Abhijit Banerjee and Esther Duflo of MIT and Michael Kremer of Harvard were lauded for their innovative use of randomized control trials and behavioral economics to evaluate the effectiveness of global poverty interventions—and for a body of scholarship that has transformed the field of development economics.

Stated the Royal Swedish Academy of Sciences: “This year’s Laureates have introduced a new approach to obtaining reliable answers about the best ways to fight global poverty. In brief, it involves dividing this issue into smaller, more manageable, questions—for example, the most effective interventions for improving educational outcomes or child health. They have shown that these smaller, more precise, questions are often best answered via carefully designed experiments among the people who are most affected.”

One of Banerjee, Duflo, and Kremer’s innovations—strengthened by other leading development economists like UC Berkeley’s Edward Miguel—is to emphasize the importance of field work and the contribution of teams. Previously, development economists worked largely in isolation; today, their studies often include dozens or even hundreds of people representing government, nonprofits, civic organizations, and private firms. This approach leads to greater transparency of both the data collected and the methodology used, as well as a richer inquiry into which poverty reduction programs and policies should be studied and whether or how they should grow.

At the Blum Center, we are studying how advances in development economics are part of a new and emerging field, which we call “global problem solving” and “development engineering.” This field is responsive  to the UN Sustainable Development Goals and to the fact that, in many cases, we have the scientific and technological tools to meet the United Nations’ 17 goals but not the financial will or transformative tools for changing people’s behavior to achieve them. Development engineering builds on what development economics has revealed—which poverty interventions are succeeding—and then modifies or scales or re-invents them for implementation elsewhere.

In this way, development engineering is both deeply indebted to development economics as well as a transdisciplinary field for our time. Its rigor is in understanding complex societal challenges—such as the need to build earthquake and typhoon-resistant homes around the globe—and then devising the technological, cultural, financial, policy tools, and work force development to implement these problem solutions.

Elizabeth Hausler, who received her PhD in civil and environmental engineering from Cal, and went on to found Build Change to empower people to live and learn in safer homes and schools, is an exemplary development engineer. When she visited the Blum Center recently, she said her organization’s greatest challenge is not in seismic technologies but in all that surrounds resilient construction in developing nations: community buy-in, policy frameworks, government advocacy, financial product availability and affordability, and ensuring local construction workers are well trained.

Hausler called her efforts “Money, Technology, People” or “The Financial, The Technical, and the Social,” describing a kind of holy trinity of development engineering demands. Another way to describe development engineering is that it enables iterative problem identification and solution formulation propelled by interdisciplinary teams. In essence, we are advocating a transdisciplinary approach that combines the insights-oriented rigor of development economics with the solutions-oriented rigor of engineering. We also aim to integrate business, natural resources, public health, and social sciences into development engineering in order to appropriately and ethically create, implement, and scale new technologies to benefit people living in resource-deprived regions.

Over the next year, the Blum Center will take steps toward realizing the promises of development engineering by partnering with the College of Engineering and the Haas School of Business to hire two tenure track professors. One will be an assistant professor whose focus area may include: engineering better health, the nexus of food, energy and water systems, accessible low-cost energy technologies, the digital transformation of societal systems, climate change mitigation, or sustainable design and communities. Applicants will be hired 50 percent into the Blum Center and 50 percent into a home department in Bioengineering, Civil & Environmental Engineering, Electrical Engineering & Computer Sciences, Industrial Engineering & Operations Research, Materials Science & Engineering, Mechanical Engineering, or Nuclear Engineering.

The second hire will be an assistant, associate, or full professor in Entrepreneurship in Developing Economies who will split his or her time between the Blum Center and the Haas School and whose research topics may include productivity, innovation, small and medium-sized enterprises, financing for entrepreneurial activities, start-ups, venture capital funding, incubators, and policies to promote new businesses.

These professors will help us realize the promises of development engineering and be leaders, with their future students, in the achieving the UN Sustainable Development Goals.

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley.

In Salute and Celebration of Women Social Entrepreneurs

In Salute and Celebration of Women Social Entrepreneurs

By Shankar Sastry

At the Blum Center, women using their entrepreneurial and discipline-specific talents to start innovative projects and organizations has been a goal since our founding. The difference today compared to 13 years ago is that there are more networks and investment opportunities for female founders. Yet barriers still exist (to be broken).

At the October 1 CITRIS Women in Tech Initiative “Inclusion by Design: Practical Tips for Improving STEM Equality,” the Blum Center’s Phillip Denny was part of a panel discussing ways to increase the participation and success of women and under-represented people in entrepreneurship.

“Networks and mentors are extremely important for female innovators, as they are for everyone,” said Denny who directs the Big Ideas Contest.

Recently, Denny documented in a Stanford Social Innovation Review article that in Big Ideas there is a correlation between female participants’ success and the number of female judges in the pool. The researchers also found that women mentors, who advise on project plans, offer much needed perspectives and networks and have a better understanding of some of the types of products and services that women are proposing.

In this month’s newsletter, we are featuring several women entrepreneurs who have come through Blum Hall.

Maria Artundauga, 2019 winner of the Big Ideas Contest, discusses how her personal and professional experiences led her to found Respira Labs, a Skydeck startup, and how she navigates male-dominated spaces as a woman of color and an immigrant.

Also in this month’s newsletter is an interview with Jill Finlayson, Cal graduate, longtime Big Ideas Contest mentor, and director of Women in Technology Initiative at CITRIS (Center for Information Technology Research in the Interest of Society) at UC Berkeley, where she supports research and initiatives to promote the equitable participation of women in the tech industry.

Also featured is the work of Vicentia Gyau, a Mastercard Foundation Scholar and Global Poverty & Practice alumna, who co-founded the nonprofit Education Redefined for All to  improve public education and workforce development in Ghana.

In addition, October was another tremendous month for Blum Center Education Director Alice Agogino and her startup Squishy Robotics, which makes shape-shifting robots for first responders in disaster situations. The Professor of Mechanical Engineering was named one of the 30 women in robotics by Robohub, and her invention won the Grand Winner Award at 2019 Silicon Valley TechPlanter competition in the global accelerator category.

Please join me in the celebration of these and other women founders and social entrepreneurs at the Blum Center, at UC Berkeley, and beyond.

And please take a look at Jason Liu’s article on the Development Engineering course Design, Evaluate and Scale Technologies (DevEng200), which is being taken by 44 UC Berkeley STEM and social science students, more than half of whom hail from outside the U.S.  

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley.

Empowering Students Inside and Outside the Classroom

Empowering Students Inside and Outside the Classroom

By Shankar Sastry

How do we educate students to become lifelong learners? University professors are continually grappling with this question, as we aim to spark students’ curiosity and engage them in thought-provoking coursework.

This fall, I am re-engaging in teaching undergraduates after 11 years, leading a 200-person course on robotics and intelligent machines. Although I will need to extensively supplement the textbook I wrote more than 20 years ago for the course, I am excited to connect with students in my field and take part in a changing undergraduate pedagogy at the nexus of technology, design, and problem solving.

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley.

Students today learn differently than my generation and have new tools at their disposal. In my class, all lectures will be recorded and made available online. This allows students to engage with the material in new ways. If they miss a lecture, they can catch up afterward. If they have questions or find a topic challenging, they can consume the lecture at their own pace, pausing to make sense of information or look up answers to questions as they arise. Indeed, it is common for students to have class-viewing sessions in their dorms. And if students are familiar with a topic area, they can watch at 1.5 speed or just focus where they need deeper understanding.

This approach is a boon for faculty as well. It frees us up to answer more substantive questions and workshop homework or challenges rather than respond to the students’ request “to explain that theorem one more time.” Giving students the ability to learn at their own pace and in their own style is one way to make learning more self-directed. It also transforming the role of faculty from holders of knowledge to knowledge guides and exploration counsellors.

Another way we are trying to inspire lifelong learners is by engaging curiosity. For the second time, we are offering a Development Engineering graduate section of our core undergraduate Global Poverty & Practice class. By opening up a graduate section designed for engineers, we aim to encourage engineering graduate students to pursue knowledge they might otherwise not encounter. The class will connect critical debates around development and foreign aid with current issues around technology (such as data privacy) and research (AI and job churn).

Finally, if we are to educate lifelong learners, we must acknowledge we are aiming not only to expand students’ intellect but also their life choices. Attending Berkeley is a widely viewed as a catalyst to becoming an engaged citizen—but only if students have the time to reflect on their individual motivations and career trajectories. Too often at Berkeley, we don’t create enough space for students to have conversations about their individual growth and journeys. To that end, we are developing a toolkit that will help faculty better facilitate conversations around personal motivations, leadership skills, and offer student workshops that will help them design (and re-design!) lives that are purposeful and fulfilling.


A Year of Solutions Science and Scholarship at the Blum Center

A Year of Solutions Science and Scholarship at the Blum Center

Shankar Sastry

What is the role of the university in the wider world? What is the role of scholarship in an era of vast digitally enabled knowledge?

These are two questions we at the Blum Center keep forefront in our minds, as we pursue forward-looking curricula and solutions scholarship related to development. During the 2018-2019 academic year, we sought to practice what we preach by holding interdisciplinary faculty salons on large development questions, both to bolster what we teach and how we can learn from one another.

The faculty salon series was kicked off by Michael Nacht, UC Berkeley’s Thomas and Alison Schneider Chair in Public Policy. The former Assistant Secretary of Defense for Global Strategic Affairs explored the nexus of national security, diplomacy, and development—and gave a sober assessment of what that nexus might produce under the Trump administration. Michael concluded that development in low-income countries will not come out of the strategic interactions of the U.S.’s economic and foreign policy positions but likely will be spurred by the for-profit sector through advances in agricultural technology, artificial intelligence, and bioengineering.

In November, Robotics Professor Ken Goldberg and Business Professor Laura Tyson, Blum Center Chair of the Trustees and Business Professor, debated the effects of automation and machine learning on employment across nations and economies. Ken, who believes automation will both eliminate and create new jobs, proposed a “multiplicity movement” to foster uniquely human skills that AI and robots cannot replicate: creativity, curiosity, imagination, empathy, human communication, diversity, and innovation. He recommended the U.S. reinforce creative and social skills in high schools and universities, so that Americans are in a position to leverage machines with varying levels of automation alongside diverse groups of people to amplify intelligence and spark problem solving.

Laura pointed out that the substitution of intelligent machines for low-cost, low-productivity workers poses the greatest challenge in Africa, where by 2050 the continent’s youth population is estimated to increase by 50 percent to 945 million. She said we must focus our attention on how African countries will fare in global trade and global supply chains, when the availability of comparatively cheap labor is no longer a competitive advantage. She advocated that nations develop comprehensive educational and development strategies that support the livelihoods of their citizens—and that share the benefits of intelligent machines broadly.

In December, Bioengineering Professor and Blum Center Chief Technologist Dan Fletcher presented on his own solutions science related to the London Declaration of Tropical Diseases. Nearly a decade ago, the declaration brought together more than 80 global organizations to control, eliminate, or eradicate at least ten of the diseases by 2020. Progress has been made on some of the diseases, but they still affect nearly one billion people, even though major pharmaceutical companies have pledged to contribute the treatment drugs. The main problem now, explained Dan, is a health information gap—both in terms of who has the diseases and where they are located. His mobile microscopy device CellScope, developed over a decade plus, can fill this gap because it both identifies the infected through testing and provides effective treatment and monitoring, even in the most remote areas. Dan has proven his technological intervention in several major papers, and is now on mission to fund the implementation of this life-saving innovation.

In early 2019, we welcomed Joshua Blumenstock from School of Information, to the faculty salon. Blumenstock, director of the Data-Intensive Development Lab, cautioned that even though the application of machine learning to monitor and alleviate poverty has become a much discussed aspiration, new digital methods may serve more as a complement than a replacement to traditional approaches, especially in the area of economic assessment. However, he did point out that satellite imagery is becoming a key source for development research because it reveals basic physical infrastructure and quality of life trends. In his own research, Joshua has shown that by leveraging machine learning to analyze satellite data, we can draw conclusions about certain aspects of the quality of life with nearly the same accuracy as traditional, multimillion-dollar field surveys.

Technological interventions are never clear cut. This was illustrated in the April Faculty Salon by Professors Isha Ray of the Energy and Resources Group and Alison Post of the Political Science Department. They shared their analysis of the effects of the UC Berkeley-incubated social enterprise NextDrop, which designed a mobile phone intervention to alert Indian households via text when to expect water supply. Isha and Alison’s two-year study found the SMS service failed to have its intended time-saving effect due to a combination of oversights by NextDrop in terms of water service provision, mobile phone ownership, and other information gaps. “It is absolutely essential to understand the role of human intermediaries and how drastically the conditions and results of an intervention can change from one setting to the next,” said Isha.

In May, we discussed Kenya’s rural electrification efforts, studied by Ted Miguel, Oxfam Professor of Environmental and Resource Economics, and Catherine Wolfram, Cora Jane Flood Professor of Business Administration. Although Kenya has received massive foreign assistance to achieve universal energy access, the economic benefits of rural electrification in the world’s poorest places are not straightforward. Ted and Catherine’s research team conducted a randomized control trial to study the effects of electricity connections in 150 Kenyan communities, and found no meaningful medium-run impacts on economic, health, and educational outcomes. The reason? Even when heavily subsidized, the cost of connecting was a significant burden for many households whose average annual cash earnings were $205. In addition, rural Kenyans had no money to buy time-saving, productivity-enhancing appliances like refrigerators or computers. 

“Power isn’t like water,” said Ted. “It isn’t like turning on the tap and getting something that improves your livelihood. Power requires you to connect to an appliance. But if you are too poor to buy something to connect to power, the hypothesized effects are not there.”

The last faculty salon of the academic year was led by Dan Kammen, Distinguished Professor of Energy, and Solomon Hsiang, Chancellor’s Professor of Public Policy, who engaged in a wide ranging conversation with interdisciplinary faculty on the economics, politics, and development impacts of climate change. Kammen has spent much of his two-decade career at UC Berkeley focusing on renewable energy research, with a focus on the role of developing economies. He underscored that in Kenya, which has a robust mobile money system, off-grid solar-generated energy is becoming the norm in many rural areas. This illustrates, he said, that around the globe—from California (which will reach its 2025 zero net carbon emission targets ahead of time) to Morocco (which is the only country meeting Paris climate accord goals)—solar, wind, and other renewable energy sources are proving to be implementable and economically viable.

The problem, of course, is that the transition away from fossil fuels to renewables is not happening quickly enough. However, Solomon, whose Global Policy Laboratory researches what we need to know to design global policy, said public interest in climate change modeling  has increased dramatically over the last two years and the conversation among governments is now how detrimental will be the social cost of global warming, particularly for Southern Hemisphere countries. “This is where the role of information and academic research becomes economically powerful,” he argued.

The Blum Center Faculty Salons will continue in the fall. Stay tuned for more news about how faculty across the disciplines can collaborate on solutions science and scholarship for global public benefit.

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley. 

A New Era in Global Development Training

A New Era in Global Development Training

Shankar Sastry

Higher education is having a disruption moment. Not so much in the sense that universities will no longer be physical places where professors instruct students—as has been the case since 859 when Fatima al-Fihri founded the University of Al-Qarawiyyan, which became the world’s first higher education institution to award degrees in mathematics, grammar, and medicine. No, higher education is in a period of intense transformation due to the increasing pace of new advances in STEM (Science, Technology, Engineering, and Mathematics)—and the way the fields mutually reinforce each other to transform and advance society.

Why are we at a STEM moment? To put it simply, these four fields have done more to generate economic growth, advance scientific innovation, and create jobs than many others. Mind you, I do not think STEM inventions have been free of negative consequences. However, many of the beneficial technological advances of the decade plus—mobile phones, GPS, the Cloud, CRISPR, generative adversarial networks, machine learning, AI-based predictive analytics, electric vehicles, chatbots, and mass production of solar arrays—have originated in STEM fields.

Yet with each passing year it becomes obvious that the STEM fields need far tighter integration with the social sciences, arts, and humanities, especially for graduates focused on local and global challenges and seeking to advance socioeconomic mobility, jobs and sustainable manufacturing, and access to clean water and affordable health care. As Kofi Annan so eloquently said, “Education is a human right with immense power to transform. On its foundation rest the cornerstones of freedom, democracy, and sustainable human development.”

With this in mind, we at the Blum Center have been looking at the changing profession of global development. In speaking with former students and current employers, we have noted a distinct rise in the need for societal benefit professionals with advanced technology skills. But the story is more complex than that. Development professionals—whether at UN departments, municipal government agencies, multinational companies, foundations, or nonprofits—report the need for a combination of skills, such as the design and management of technology, knowledge of emerging technologies, evidence-based assessment techniques, economic development, social problem solving, and cross-cultural collaboration and community engagement. 

The recent report “Next Generation Professional” published by USAID and Devex, for example, states: “Development professionals a decade from now will not look the same. One reason is technology. It’s easy to envision a time when drones streamline every agricultural development program, when every health worker is equipped with high-tech mobile diagnostics, and when artificial intelligence provides real-time data to guide humanitarian assistance and disaster relief. The shifting development finance outlook is another factor. Program managers, resource mobilizers, and partnership professionals might continue to seek grants from bilateral aid agencies, but they may also partner with private sector corporations, attract impact investment funds, or manage crowdfunding campaigns targeting specific causes. Tying all these together are the softer skills—like communicating across cultures and working in teams—that make the industry truly unique.”

I mention all this because the Blum Center has begun thinking about how to build upon its courses for the Global Poverty & Practice minor and the Development Engineering designated emphasis, to provide these in-demand professional skills in a time effective manner. We have seen many STEM students and professionals who are looking for careers with impact, but have few avenues to get the right tools for framing and solving societal scale problems. And we have seen many non-STEM students and professionals who need the technical skills the future development sector demands. These constituencies want us to offer a professional education with a focus on problem solving skills for complex societal problems at the nexus of new technologies, new business models, and changing communities and their needs.

What do you think of this? What are we missing? Come talk to us about this new era of global development training.

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies and NEC Distinguished Professor of Electrical Engineering and Computer Sciences at UC Berkeley.

A Watershed Moment in Global Poverty Reduction

A Watershed Moment in Global Poverty Reduction

Shankar Sastry

Two thousand and eighteen has been called a watershed moment in global poverty reduction. It was the year—according to two major analyses—that more than half of the world’s population moved into the “middle class.” And it was marked by a billion people moving out of “extreme poverty” in the time period 2000-2018.

In terms of the global middle class, Homi Kharas and his colleagues at the Geneva-based World Data Lab have written in a Brookings Institute report that this demographic is defined as households that spend $11 to $100 per day per person in 2011 purchasing power parity. Kharas acknowledges that middle class does not have a precise international definition, but is a way to understand the ability for 3.8 billion people to buy consumer goods like motorcycles, refrigerators, or washing machines, go to the movies or take a vacation—and, most important, be able to weather economic shocks like short-term illness or unemployment without falling into extreme poverty.

The global middle class is predominantly Asian and spread out in China, India, and South and South East Asia, where urban populations have mostly doubled in the past generation. The World Data Lab forecasts the global middle class markets in China and India will grow to 5.3 billion people by 2030 and will account for $14.1 trillion and $12.3 trillion, respectively, comparable in size to a U.S. middle-class market at that time of $15.9 trillion.

That is a remarkable turn of events of great interest to policy makers, corporate leaders, and of course academic researchers at the Blum Center. Questions include: What are the products and services that this global middle class needs and wants? What are the implications for food, energy, and water production, and laterally, for climate change due to this socioeconomic growth? What skills and education are required for this rising population to sustain its progress? How will societal digital transformations, such as AI and automation, thwart or abet the billions climbing the economic ladder? And to what degree is this new global middle class sustainable?

Rohini Pande of Harvard’s Evidence for Policy Design Initiative, pointed out in a recent New York Times article that the decline in poverty in Indian and China “has fed an erroneous belief in the West that economies rising into middle-income status are on track to end extreme poverty and no longer need assistance.” She warns that a “redirection of global aid risks neglecting the hundreds of millions who may never escape poverty despite living in countries that are becoming relatively rich.”

Some of Pande’s analysis is in reaction to the other big global demographic story of 2018, published in the Bill and Melinda Gates Foundation’s “Goalkeepers” report, which tracks progress on 18 key United Nations Sustainable Development Goals. According to “Goalkeepers,” extreme poverty (US $1.90/day) is on the decline, with 50 million people’s lives being saved due to advances in medicine since 2000. One aim of the Gates report is to warn that extreme poverty is becoming heavily concentrated in Sub-Saharan African countries. By 2050, that region is where 86 percent of the world’s extremely poor are projected to live, with the majority (more than 40 percent) living in just two countries, the Democratic Republic of the Congo and Nigeria.

The Gates Foundation advises: “the world’s priority for the next three decades should be the third wave of poverty reduction in Africa.” It also warns that if large numbers of poor people in the poorest countries are denied opportunities, the result will be “insecurity, instability, and mass migration …. Investing in young people’s health and education is the best way for a country to unlock productivity and innovation, cut poverty, create opportunities.”

As we at the Blum Center mull all this, we are asking: What can be done to sustain global middle class progress in Asia and enable economic and technological development in Sub-Saharan Africa? What can we as stewards of the world’s leading public research university do to improve livelihoods worldwide? How best can we train the next generation of leaders in equality, innovation, and global problem solving? And what are the research areas on which we should make our big bets?

On January 8, 2019, Blum Center faculty and staff met with our counterparts from CITRIS and the Banatao Institute, Sutardja Center for Entrepreneurship & Technology,  Haas Institute for Business and Social Impact, and Jacobs Institute for Design Innovation to think through our response to these and other questions. Most of these centers came out of the revolutionary changes that technology, globalization, and engineering advances have brought to high education and society over the past decade plus.  

Since 2001, CITRIS has focused on creating interdisciplinary information technology solutions for California and beyond. Since 2005, the Sutardja Center has taught thousands of engineers and scientists to innovate, lead, and commercialize technology within a global economy. Founded in 2013, the Haas Institute for Business and Social Impact has addressed critical challenges facing the world through creative business solutions. Opened in 2015, the Jacobs Institute is as an interdisciplinary hub for learning and making at the intersection of design and technology. And founded in 2006, the Blum Center serves as the campus’ interdisciplinary hub for understanding and acting on devising solutions for global poverty and inequality.

These five UC centers have much in common because of the way they intersect on issues of technology and engineering, business and entrepreneurship, equality and social impact, and design innovation. Because of these commonalities, leadership from the five centers have decided to explore educational and research collaborations. We will be reporting on joint initiatives in future reports.

So please stay tuned, and let us know your ideas and projects that address this pivotal moment in global poverty reduction.

Shankar Sastry is Faculty Director of the Blum Center for Developing Economies. He is a Professor of Electrical Engineering and Computer Sciences, Bioengineering, and Mechanical Engineering.

Host and Fellow Responsibilities

Host Organizations

  • Identify staff supervisor to manage I&E Climate Action Fellow
  • Submit fellowship description and tasks
  • Engage in the matching process
  • Mentor and advise students
  • Communicate with Berkeley program director and give feedback on the program.

Berkeley Program Director​

  • Communicate with host organizations, students, and other university departments to ensure smooth program operations

Student Fellows

  • Complete application and cohort activities
  • Communicate with staff and host organizations
  • Successfully complete assignments from host organization during summer practicum
  • Summarize and report summer experience activities post-fellowship